
Apache Kafka® Cloud

Connector

Documentation

Eurotech SpA

Copyright © 2022 Eurotech and/or its affiliates

5

6

6

6

7

9

10

26

26

26

27

27

27

Table of Contents

Home

Introduction

• Prerequisites

• General concepts

• Kafka Topics

• Kafka Partitions

• Producers, Consumers and Consumer Groups

Cloud Stack Configurations

Endpoint Configuration

Data Service Layer Configuration

Publisher/Subscriber Configurations

Cloud Publisher Configuration

• Producer topic

• Key

• Publish metrics & Publish position

• Priority

• Quality of service (QoS)

28

28

30

30

30

30

Cloud Subscriber Configuration

• Topic

References

References

• ESF Documentation

• Kafka Documentation

• Kafka Known Issues

Home

Copyright © 2022 Eurotech and/or its affiliates

Introduction

Version: 1.0.0

Apache Kafka® is an open-source framework that allows the reading, storing, and processing

of data streams. It is designed to be deployed on distributed systems to allow high availability

and scalability. The data exchanged in Kafka are events. Kafka Clients can read, process, and

store events on a common distributed event log, which is kept aligned and synchronized by the

Kafka Broker itself.

The Apache Kafka® Cloud Connector is a Kafka Client that allows interacting with a Kafka

Broker by producing or consuming event streams via a publisher/subscriber model. The event

stream is maintained in the broker and clients can publish, subscribe to, and process events. A

good introduction to the fundamental Kafka concepts can be found at the Kafka Introduction

(https://kafka.apache.org/intro).

Prerequisites

The Apache Kafka® Cloud Connector installed on the system.

A running Kafka Broker with well-known topics.

•

•

5 Introduction

Copyright © 2022 Eurotech and/or its affiliates

https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/intro

If running ESF < 7.2.0, an org.eclipse.kura.cloud.CloudService needs to be

instantiated in order to use Kura Protobuf payload encoding (see Endpoint Configuration).

General concepts

The provided cloud endpoint encapsulates a KafkaConsumer (https://kafka.apache.org/

documentation/#consumerapi) and a KafkaProducer (https://kafka.apache.org/

documentation/#producerapi).

Producers are those client applications that publish (write) events to Kafka, and Consumers are

those that subscribe to (read and process) these events. In Kafka, producers and consumers

are fully decoupled and agnostic of each other, which is a key design element to achieving the

high scalability that Kafka is known for.

The Cloud Connection encapsulates an instance of a KafkaConsumer and an instance of a

KafkaProducer. In order to have multiple producer or consumer instances you need to create

multiple cloud connections. CloudPublisher or CloudSubscriber instances created using

this Cloud Connector use the KafkaProducer or KafkaConsumer of the created Cloud

Connection instance.

Kafka Topics

A topic in Kafka is a log of events. Logs are easy to understand, because they are simple data

structures with well-known semantics. Topics have the following characteristics:

Append only: new messages are always written at the end of the log.

Topics can only be read by seeking an arbitrary offset in the log, then by scanning

sequential log entries.

Events in the log are immutable.

Topics are defined server-side, in a default setting they cannot be created dynamically by a

Kafka Producer but they must be created in advance.

Kafka Partitions

A Kafka topic can be divided into one or more partitions, and the number of partitions per topic

is configurable. Partitioning takes the single topic log and breaks it into multiple logs, each of

which can live on a separate node in the Kafka cluster. This way, the work of storing messages,

writing new messages, and processing existing messages can be split among many nodes in

the cluster. Out of that, one partition will be the leader. All read and write to a topic goes through

the leader, and the leader coordinates updating the replicas. If a leader fails, a replica in the list

is assigned as the new leader.

•

1.

2.

3.

6 Introduction

Copyright © 2022 Eurotech and/or its affiliates

endpoint/
https://kafka.apache.org/documentation/#consumerapi
https://kafka.apache.org/documentation/#consumerapi
https://kafka.apache.org/documentation/#consumerapi
https://kafka.apache.org/documentation/#consumerapi
https://kafka.apache.org/documentation/#consumerapi
https://kafka.apache.org/documentation/#producerapi
https://kafka.apache.org/documentation/#producerapi
https://kafka.apache.org/documentation/#producerapi
https://kafka.apache.org/documentation/#producerapi
https://kafka.apache.org/documentation/#producerapi

Producers, Consumers and Consumer Groups

In Kafka, each topic is divided into a set of logs known as partitions. Producers write to the tail

of these logs and consumers read the logs at their own pace. Kafka scales topic consumption

by distributing partitions among a consumer group, which is a set of consumers sharing a

common group identifier. Each partition in the topic is assigned to exactly one member in the

group, so there will be no two consumers reading from the same partition inside the same

group. When all partitions are assigned, there might be some idle consumers.

7 Introduction

Copyright © 2022 Eurotech and/or its affiliates

Cloud Stack

Configurations

Copyright © 2022 Eurotech and/or its affiliates

Endpoint Configuration

Version: 1.0.0

The KafkaClientCloudEndpoint layer allows defining properties that dictate the encoding

of the payload and whether to compress it using GZIP format.

If using the RAW encoding, only the body of the KuraPayload is serialized, whereas the metrics

and position data are not included in the record. Instead, when using Simple JSON or Kura

Protobuf all the data present in the KuraPayload is encoded. Whether to include such data

is controlled by the Publisher Configuration properties.

Attention

In order to use Kura Protobuf some service should expose the following interfaces:

org.eclipse.kura.cloud.CloudPayloadProtoBufEncoder, and

org.eclipse.kura.cloud.CloudPayloadProtoBufDecoder

If running on ESF < 7.2.0, a default org.eclipse.kura.cloud.CloudService provides such interfaces.

•

•

9 Endpoint Configuration

Copyright © 2022 Eurotech and/or its affiliates

../publisher/

Data Service Layer Configuration

Version: 1.0.0

Data service configurations are the canonical ones defined for other ESF Cloud Connections.

Please refer to the ESF documentation, Data Service Configuration section (https://

esf.eurotech.com/docs/data-service).

10 Data Service Layer Configuration

Copyright © 2022 Eurotech and/or its affiliates

https://esf.eurotech.com/docs/data-service
https://esf.eurotech.com/docs/data-service
https://esf.eurotech.com/docs/data-service
https://esf.eurotech.com/docs/data-service

Data Transport Layer

configuration

Copyright © 2022 Eurotech and/or its affiliates

Data Transport Layer Configuration

Version: 1.0.0

The KafkaClientDataTransport layer allows defining the configuration for the underlying

KafkaConsumer and KafkaProducer instances that are used in this Cloud Connection. The

user should have a good understanding of how a Kafka Client can be configured. Wrong

configuration combinations can lead the producer or the consumer to throw exceptions. The

configurable properties that are shown in the ESF UI can be further referenced in the Kafka

Producer configurations documentation (https://kafka.apache.org/documentation/

#producerconfigs) and the Kafka Consumer configurations documentation (https://

kafka.apache.org/documentation/#consumerconfigs).

Attention

The Data Transport layer creates the Kafka Producer and Kafka Consumer instances with the most secure setting

available: SSL authentication. This option requires specifying a valid Keystore Path, otherwise, the Data Transport

layer will not be initialized. Section Security configurations explains in more detail the security-related configurations

and their setup.

12 Data Transport Layer Configuration

Copyright © 2022 Eurotech and/or its affiliates

https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
../transport-security/

Producer-related configurations

Version: 1.0.0

The producer consists of a pool of buffer space that holds records that haven't yet been

transmitted to the server as well as a background I/O thread that is responsible for turning these

records into requests and transmitting them to the cluster.

Each cloud connection instantiates a single KafkaProducer, which is shared among the

CloudPublishers.

Acknowledgements

The acks config controls the criteria under which requests are considered complete. The ALL

setting will result in blocking on the full commit of the record, the slowest but most durable

setting.

When this property is set to ALL and the oldest in-flight message is deleted from the data

service, the acknowledgement might never be received. This causes the producer to never

send new messages. Hence, when using this setting it is recommended tweaking the

max.inflight.requests.per.connection config, the QoS of the produced message

(Publisher configurations), or the store settings (DataService layer).

Default configurations

The instantiated KafkaProducer is initialized with some default configurations that are not

definable by the user:

retries=0: the producer will not try to resend any record whose send fails with a

potentially transient error.

linger.ms=0: the producer groups together any records that arrive in between request

transmissions into a single batched request. Normally this occurs only under load when

records arrive faster than they can be sent out. With this setting to 0, the client will not wait

any amount of delay for accumulating larger batches of records. The accumulated

records are always sent immediately.

request.timeout.ms=1000: maximum amount of time the client will wait for the

response of a request.

Attention

The producer implemented in this layer is not transactional nor idempotent.

•

•

•

13 Producer-related configurations

Copyright © 2022 Eurotech and/or its affiliates

delivery.timeout.ms=1000: upper bound on the time to report success or failure

after send. This limits the total time that a record will be delayed prior to sending and the

time to await acknowledgement from the broker.

key.serializer=org.apache.kafka.common.serialization.StringSerializer:

the producer is able to process only records with keys of type java.lang.String.

value.serializer=org.apache.kafka.common.serialization.ByteArraySerializer:

the producer is able to process only records with values of type byte[].

All the other configs are defaulted according to the Kafka Producer configurations

documentation (https://kafka.apache.org/documentation/#producerconfigs).

•

•

•

14 Producer-related configurations

Copyright © 2022 Eurotech and/or its affiliates

https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs

Consumer-related configurations

Version: 1.0.0

Each cloud connection instantiates a single KafkaConsumer, which is shared among the

CloudSubscribers.

Group management

A Kafka Consumer Group has the following properties:

All the Consumers in a group have the same group.id.

Only one Consumer reads each partition in the topic.

The maximum number of KafkaConsumers is equal to the number of partitions in the

topic. If there are more consumers than partitions, then some of the consumers will

remain idle.

A Consumer can read from more than one partition.

Since each cloud connection instantiates a single KafkaConsumer, there might be the need to

create multiple cloud connections to leverage partitions assignments.

Consumer liveness settings

After subscribing to a set of topics, the consumer will automatically join the group when the

Cloud Connection is connected. As long as the Cloud Connection is connected, the consumer

will stay in the group and continue to receive messages from the partitions it was assigned to.

Underneath the covers, the consumer sends periodic heartbeats to the server, whose

frequency is controlled by heartbeat.interval.ms parameter.

If the consumer crashes or is unable to send heartbeats for a duration of

session.timeout.ms, then the consumer will be considered dead and its partitions will be

reassigned.

Avoiding livelocks

It is also possible that the consumer could encounter a "livelock" situation where it is continuing

to send heartbeats, but no progress is being made. The setting max.poll.interval.ms

allows to prevent the consumer from holding onto its partitions indefinitely in this case.

If no message is being sent inside the configured max interval, then the client will proactively

leave the group so that another consumer can take over its partitions. When this happens, you

•

•

•

•

15 Consumer-related configurations

Copyright © 2022 Eurotech and/or its affiliates

may see an offset commit failure. This is a safety mechanism which guarantees that only active

members of the group are able to commit offsets.

Offset management

The consumer offset is a way of tracking the sequential order in which messages are received

by Kafka topics. The Kafka consumer offset allows processing to continue from where it last left

off if the connection is lost or if there is an unexpected failure.

Initially, when a Kafka consumer starts for a new topic, the offset begins at zero (0). The

auto.offset.reset config kicks in only if the consumer group does not have a valid

committed offset. Two scenarios might be possible:

A Cloud Connection is configured with the consumer group to be group1,

enable.auto.commit is enabled, and subscribers have consumed 5 messages before

disconnecting. Next time the Cloud Connection is reconnected, the KafkaConsumer will

not use the auto.offset.reset config but will continue from the latest committed

record.

A Cloud Connection is configured with the consumer group to be group2 and no

subscribers have consumed messages yet. There is no offset stored anywhere and this

time the auto.offset.reset config will decide whether to start from the beginning of

the topic (EARLIEST) or from the end of the topic (LATEST).

Setting enable.auto.commit means that offsets are committed automatically with a

frequency controlled by the config auto.commit.interval.ms. If not set, when the

consumer gets disconnected, the auto.offset.reset policy is applied since the consumed

records are not committed.

Partitioning

Kafka dynamically assign a fair share of the partitions for those topics based on the active

consumers in the group. This version of KafkaClientCloudConnection does not allow

defining the partitioning of the KafkaConsumer.

Default configurations

The instantiated KafkaConsumer is initialized with some default configurations that are not

definable by the user:

key.deserializer=org.apache.kafka.common.serialization.StringDeserializer:

the consumer is able to process only records with keys of type java.lang.String.

value.deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer:

the consumer is able to process only records with values of type byte[].

1.

2.

•

•

16 Consumer-related configurations

Copyright © 2022 Eurotech and/or its affiliates

All the other configs are defaulted according to the Kafka Consumer configurations

documentation (https://kafka.apache.org/documentation/#consumerconfigs).

17 Consumer-related configurations

Copyright © 2022 Eurotech and/or its affiliates

https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs

Security configurations

Version: 1.0.0

This section details the various security configurations that are possible to apply at the transport

level. The security.protocol field allows to apply the following security mechanisms (in

order of increased security):

PLAINTEXT: no encryption is made.

SASL/PLAINTEXT: username/password-based authentication using Simple

Authentication and Security Layer (SASL). Using this option no encryption is made, hence

the credentials and the data are exchanged in cleartext.

SASL/PLAINTEXT over TLS: username/password-based authentication using Simple

Authentication and Security Layer (SASL). The encryption is made at transport level using

TLS.

SSL: SSL-based two-way authentication. This is the most secure setting and the default

one. Please read the following sections to understand how to setup SSL authentication.

The following sections detail how to set up SSL and SASL authentication.

Configure SSL two-way authentication

The Kafka Cloud Connector requires a keystore where to store the trusted certificates and the

needed key pairs. ESF provides a Keystore Configuration service that can be used to create

keystores and store certificates. Refer to Kafka Encryption and Authentication using SSL

(https://kafka.apache.org/documentation.html#security_ssl) for further details.

1. Create test certificates

This section explains how to create a server and a client certificate signed by a CA. The server

certificate is created so to allow hostname verification by the clients.

•

•

•

•

Attention

Configuring the cloud connector to use a security protocol that is not advertised on the broker will lead to a

java.lang.OutOfMemoryError: Java heap space. This is a known Kafka issue, refer to Apache Issue 4090

(https://issues.apache.org/jira/browse/KAFKA-4090) for more details. Hence, be careful to match the

bootstrap.servers configuration with the security.protocol one. In case the error happens, it is sufficient

to click on the "Connect/Disconnect" button of the cloud connection, correct the configuration, and then click again

on "Connect/Disconnect".

18 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

https://issues.apache.org/jira/browse/KAFKA-4090
https://issues.apache.org/jira/browse/KAFKA-4090
https://issues.apache.org/jira/browse/KAFKA-4090
https://issues.apache.org/jira/browse/KAFKA-4090
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_ssl

Certification Authority CA

From the machine running the test broker, create a x509 configuration file named openssl-

ca.cnf from the following template:

HOME = .

RANDFILE = $ENV::HOME/.rnd

##

[ca]

default_ca = CA_default # The default ca section

[CA_default]

base_dir = .

certificate = $base_dir/cacert.pem # The CA certifcate

private_key = $base_dir/cakey.pem # The CA private key

new_certs_dir = $base_dir # Location for new certs after signing

database = $base_dir/index.txt # Database index file

serial = $base_dir/serial.txt # The current serial number

default_days = 1000 # How long to certify for

default_crl_days = 30 # How long before next CRL

default_md = sha256 # Use public key default MD

preserve = no # Keep passed DN ordering

x509_extensions = ca_extensions # The extensions to add to the cert

email_in_dn = no # Don't concat the email in the DN

copy_extensions = copy # Required to copy SANs from CSR to cert

##

[req]

default_bits = 4096

default_keyfile = cakey.pem

distinguished_name = ca_distinguished_name

x509_extensions = ca_extensions

string_mask = utf8only

##

[ca_distinguished_name]

countryName = countryName

countryName_default = US

stateOrProvinceName = stateOrProvinceName

stateOrProvinceName_default = DEFAULT

19 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

Next, generate a Certification Authority key pair using the previously created configuration file:

localityName = Amaro

localityName_default = DEFAULT

organizationName = Eurotech

organizationName_default = DEFAULT

organizationalUnitName = ESF

organizationalUnitName_default = DEFAULT

commonName = <ipbroker>

commonName_default = IP:<ip-broker>

emailAddress = test@test.com

emailAddress_default = test@test.com

##

[ca_extensions]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always, issuer

basicConstraints = critical, CA:true

keyUsage = keyCertSign, cRLSign

##

[signing_policy]

countryName = optional

stateOrProvinceName = optional

localityName = optional

organizationName = optional

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

##

[signing_req]

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid,issuer

basicConstraints = CA:FALSE

keyUsage = digitalSignature, keyEncipherment

20 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

This command will create a CA private key cakey.pem and the CA public certificate

cacert.pem. serial.txt and index.txt are used by the tool when multiple signatures are

issued. Import the certificate into the truststore:

Broker certificate

Create a broker certificate to be signed later on with the CA:

This generates a new keystore kafka.server.keystore.jks in PKCS12 format which

contains a new key pair with alias localhost. The option -ext SAN=IP:<ip-broker>

allows to include in the generated certificate the Subject Alternative Name, which can be used

by the client for verifying the hostname.

Create a Certificate Signature Request by specifying the SAN for hostname verification:

Create a signed server certificate from the previously created CSR:

Import the CA public certificate and the signed server public certificate into the server keystore:

Client key pair

Generate a private key:

echo 01 > serial.txt

touch index.txt

openssl req -x509 -config openssl-ca.cnf -newkey rsa:4096 -sha256 -nodes -out cacert.pem -outform PEM

keytool -keystore kafka.server.truststore.jks -alias CARoot -import -file cacert.pem

keytool -keystore kafka.server.keystore.jks -alias localhost -validity 365 -genkey -keyalg RSA -storetype pkcs12 -ext SAN=IP:<ip-broker>

keytool -list -v -keystore kafka.server.keystore.jks

keytool -keystore kafka.server.keystore.jks -alias localhost -certreq -file servercert.csr -ext SAN=IP:<ip-broker>

openssl ca -config openssl-ca.cnf -policy signing_policy -extensions signing_req -out servercert-signed.pem -infiles servercert.csr

openssl x509 -in servercert-signed.pem -text -noout

keytool -keystore kafka.server.keystore.jks -alias CARoot -import -file cacert.pem

keytool -keystore kafka.server.keystore.jks -alias localhost -import -file servercert-signed.pem

keytool -list -v -keystore kafka.server.keystore.jks

21 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

Create a CSR:

Sign it with the CA's key pair:

Export the client.key private key in PKCS8 format for usage in ESF:

2. Configure kafka broker

The broker can be configured with the following properties (usually found in

server.properties file):

This allows the broker to listen for unencrypted connections on <ip-broker>:9092 and

requires SSL on <ip-broker>:9093. Configure the correct TLS protocol and leave

ssl.endpoint.identification.algorithm= empty for disabling hostname verification by

the broker.

3. Create a new keystore (optional)

In this tutorial, a new keystore specific for the Kafka client will be created. An existing keystore

might be used as well. In the ESF UI, move to "Keystore Configuration" under the "Security"

section. Add a new keystore specifying a file path and a password.

openssl genrsa -out client.key 4096

openssl req -new -key client.key -out client.csr

openssl x509 -req -CA cacert.pem -CAkey cakey.pem -in client.csr -out client-signed.pem -days 365 -CAcreateserial -passin pass:{ca-password}

openssl pkcs8 -topk8 -inform PEM -outform PEM -in client.key -out client.pem -nocrypt

ssl.truststore.location=<path/to/kafka.server.truststore.jks>

ssl.truststore.password=<password>

ssl.keystore.location=<path/to/kafka.server.keystore.jks>

ssl.keystore.password=<password>

ssl.key.password=<password>

listeners=PLAINTEXT://<ip-broker>:9092,SSL://<ip-broker>:9093

advertised.listeners=PLAINTEXT://<ip-broker>:9092,SSL://<ip-broker>:9093

ssl.client.auth=required

ssl.enabled.protocols=TLSv1.2

ssl.endpoint.identification.algorithm=

22 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

4. Import client key pair and CA public certificate in ESF

This can be done by adding the key pair and the trusted certificate from the ESF UI in the

"Security" section. Make sure to select the previously created keystore.

5. Configure Kafka transport

In the KafkaClientDataTransport layer, set security.protocol to SSL and configure

the Keystore Path as the path defined at step 3. Set the Enable hostname

verification option to true to enable hostname verification. The certificates created in step

1 should enable this feature.

Configure SASL authentication

The Apache Kafka® Cloud Connector supports authentication via Simple Authentication and

Security Layer (SASL). The security.protocol field allows to choose from two different

SASL mechanisms:

simple SASL/PLAINTEXT, and

SASL/PLAINTEXT over TLS.

SASL/PLAINTEXT is a simple username/password authentication-based mechanism. Note that

it is not encrypting the underlying connection, so the sent credentials are in clear. This option is

intended to use mainly for debug purposes when the connecting Kafka broker is not securely

configured. The SASL/PLAINTEXT over TLS option uses a username/password authentication-

based mechanism but the connection is encrypted at transport level, using TLS. This option is

safer than the previous.

The next sections are guides to configuring the Kafka broker and the cloud connector to use

SASL authentication mechanisms. Refer to the Confluent documentation: Authentication with

SASL using JAAS (https://docs.confluent.io/platform/current/kafka/authentication_sasl/

index.html) or Kafka Authentication using SASL (https://kafka.apache.org/

documentation.html#security_sasl) for further details.

1. Configure the Kafka broker for SASL-PLAINTEXT

To configure the broker, edit server.properties file by adding PLAIN to the enabled SASL

mechanisms:

Configure the broker to listen for SASL connections by adding the following listeners in the

server.properties file:

•

•

sasl.enabled.mechanisms=PLAIN

23 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://kafka.apache.org/documentation.html#security_sasl
https://kafka.apache.org/documentation.html#security_sasl
https://kafka.apache.org/documentation.html#security_sasl
https://kafka.apache.org/documentation.html#security_sasl

In case SASL/PLAINTEXT over TLS is configured, replace SASL_PLAINTEXT with

SASL_SSL and configure the keystore and truststore as in the previous sections. Next, create a

JAAS configuration file as follows:

Insert as many user_<username>=<password> as many credentials are wanted. This

configuration file is passed as a JVM parameter. Modify bin/kafka-server-start.sh to

specify the security configuration in EXTRA_ARGS:

At this point, the cloud connector should be able to connect to the broker with the specified

credentials in SASL username and SASL password.

2.Configure SASL-PLAINTEXT over TLS

In case SASL/PLAINTEXT over TLS is used, the Keystore Path property must be set to

the keystore containing the CA certificate for setting up the underlying SSL connection. The

same keystore as the one used in the previous section can be used.

listeners=SASL_PLAINTEXT://<broker-ip>:<port>

advertised.listeners=SASL_PLAINTEXT://<broker-ip>:<port>

KafkaServer {

 org.apache.kafka.common.security.plain.PlainLoginModule required

 username="<username>"

 password="<password>"

 user_<username>="<password>";

};

-Djava.security.auth.login.config=/path/to/jaas/file

24 Security configurations

Copyright © 2022 Eurotech and/or its affiliates

Publisher/Subscriber

Configurations

Copyright © 2022 Eurotech and/or its affiliates

Cloud Publisher Configuration

Version: 1.0.0

The

com.eurotech.framework.kafka.client.cloudconnection.publisher.KafkaClientPublisher

allows interaction with the KafkaProducer instance of the Cloud Connection. The

configuration properties for the publisher are detailed below.

Events created by the underlying KafkaProducer are sent as ProducerRecord. Such

records have a fixed type for the key and the value and are serialized as follows:

value: is of type byte[] and is serialized using the default

org.apache.kafka.common.serialization.ByteArraySerializer (https://

kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/

ByteArraySerializer.html).

key (optional): is of type java.lang.String and is serialized using the default

org.apache.kafka.common.serialization.StringSerializer (https://

kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/

StringSerializer.html).

Producer topic

This configuration is mandatory. It sets the Kafka topic to which send the created events. Valid

characters for Kafka topics match the following pattern:

However, one thing to keep in mind is that due to limitations in metric names, topics with a

period (.) or underscore (_) could collide. To avoid issues it is best to use either, but not both.

Key

This configuration is optional. When specified, all the messages of this publisher are sent to a

single partition. In Kafka, the messages are guaranteed to be processed in order only if they

share the same key, so specify the key only if the application requires message ordering.

The default partitioner used by the producer in Kafka works as follows. The producer first

calculates a numeric hash of the key using murmur2 algorithm, and then selects the partition

number by the following formula:

•

•

[a-zA-Z0-9\._\-]

26 Cloud Publisher Configuration

Copyright © 2022 Eurotech and/or its affiliates

https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArraySerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringSerializer.html

Where % is the modulus operation.

For example, the murmur2 of the string testkey is 2871421366. If the topic has 10 partitions,

2871421366 % 10 = 6. Hence, using the default partitioner, every message send with key

testkey will land in partition number 6.

Publish metrics & Publish position

When set to false, the publisher will strip off such data from the KuraPayload before sending

it. Metrics and position data are always ignored when the Payload Encoding property of the

KafkaClientCloudEndpoint section is set to RAW.

Priority

Used by the data service, sets the priority of the message. This priority is used to determine the

republishing order of the unpublished messages. A message reordering may occur.

Quality of service (QoS)

This parameter is used by the data service to guarantee that the message is delivered at most

once (QoS = 0) or at least once (QoS > 0).

murmur2(key) % number_of_partitions

27 Cloud Publisher Configuration

Copyright © 2022 Eurotech and/or its affiliates

../endpoint/
../endpoint/

Cloud Subscriber Configuration

Version: 1.0.0

The

com.eurotech.framework.kafka.client.cloudconnection.subscriber.KafkaClientSubscriber

allows interaction with the KafkaConsumer instance of the Cloud Connection. The

configuration properties for the subscriber are detailed below.

Events received by the underlying KafkaConsumer are of type ProducerRecord. Such

records have a fixed type for the key and the value and are deserialized as follows:

value: is of type byte[] and is deserialized using the default

org.apache.kafka.common.serialization.ByteArrayDeserializer (https://

kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/

ByteArrayDeserializer.html).

key: is of type java.lang.String and is deserialized using the default

org.apache.kafka.common.serialization.StringDeserializer (https://

kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/

StringDeserializer.html).

Topic

Required field, sets the topic to which subscribe. Valid characters for Kafka topics match the

following pattern:

However, one thing to keep in mind is that due to limitations in metric names, topics with a

period (.) or underscore (_) could collide. To avoid issues it is best to use either, but not both.

•

•

[a-zA-Z0-9\._\-]

28 Cloud Subscriber Configuration

Copyright © 2022 Eurotech and/or its affiliates

https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/ByteArrayDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html
https://kafka.apache.org/0100/javadoc/org/apache/kafka/common/serialization/StringDeserializer.html

References

Copyright © 2022 Eurotech and/or its affiliates

References

ESF Documentation

Cloud Services (https://esf.eurotech.com/docs/cloud-services)

Data Service Configuration (https://esf.eurotech.com/docs/data-service)

Multi-cloud Connection Support (https://esf.eurotech.com/docs/overview)

Kafka Documentation

Kafka Introduction (https://kafka.apache.org/intro)

Kafka Producer configurations (https://kafka.apache.org/documentation/

#producerconfigs)

Kafka Consumer configurations (https://kafka.apache.org/documentation/

#consumerconfigs)

KafkaProducer API (https://docs.confluent.io/platform/current/clients/javadocs/javadoc/

org/apache/kafka/clients/producer/KafkaProducer.html)

KafkaConsumer API (https://kafka.apache.org/22/javadoc/org/apache/kafka/clients/

consumer/KafkaConsumer.html)

Apache Kafka Homepage (https://kafka.apache.org)

Kafka Encryption and Authentication using SSL (https://kafka.apache.org/

documentation.html#security_ssl)

Kafka Authentication using SASL (https://kafka.apache.org/

documentation.html#security_sasl)

Confluent documentation: Authentication with SASL using JAAS (https://docs.confluent.io/

platform/current/kafka/authentication_sasl/index.html)

Kafka Known Issues

Apache Issue 4090 (https://issues.apache.org/jira/browse/KAFKA-4090)

•

•

•

•

•

•

•

•

•

•

•

•

•

30 References

Copyright © 2022 Eurotech and/or its affiliates

https://esf.eurotech.com/docs/cloud-services
https://esf.eurotech.com/docs/cloud-services
https://esf.eurotech.com/docs/data-service
https://esf.eurotech.com/docs/data-service
https://esf.eurotech.com/docs/overview
https://esf.eurotech.com/docs/overview
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#producerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs
https://docs.confluent.io/platform/current/clients/javadocs/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://docs.confluent.io/platform/current/clients/javadocs/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://docs.confluent.io/platform/current/clients/javadocs/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://docs.confluent.io/platform/current/clients/javadocs/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/22/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/22/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/22/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/22/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org
https://kafka.apache.org
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_ssl
https://kafka.apache.org/documentation.html#security_sasl
https://kafka.apache.org/documentation.html#security_sasl
https://kafka.apache.org/documentation.html#security_sasl
https://kafka.apache.org/documentation.html#security_sasl
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/index.html
https://issues.apache.org/jira/browse/KAFKA-4090
https://issues.apache.org/jira/browse/KAFKA-4090

	Apache Kafka® Cloud Connector Documentation
	Table of Contents
	Home
	Introduction

	Cloud Stack Configurations
	Endpoint Configuration
	Data Service Layer Configuration

	Publisher/Subscriber Configurations
	Cloud Publisher Configuration
	Cloud Subscriber Configuration

	References
	References

	Home
	Introduction
	Prerequisites
	General concepts
	Kafka Topics
	Kafka Partitions
	Producers, Consumers and Consumer Groups

	Cloud Stack Configurations
	Endpoint Configuration
	Data Service Layer Configuration
	Data Transport Layer configuration
	Data Transport Layer Configuration
	Producer-related configurations
	Acknowledgements
	Default configurations

	Consumer-related configurations
	Group management
	Consumer liveness settings
	Avoiding livelocks
	Offset management
	Partitioning
	Default configurations

	Security configurations
	Configure SSL two-way authentication
	1. Create test certificates
	Certification Authority CA
	Broker certificate
	Client key pair

	2. Configure kafka broker
	3. Create a new keystore (optional)
	4. Import client key pair and CA public certificate in ESF
	5. Configure Kafka transport

	Configure SASL authentication
	1. Configure the Kafka broker for SASL-PLAINTEXT
	2.Configure SASL-PLAINTEXT over TLS

	Publisher/Subscriber Configurations
	Cloud Publisher Configuration
	Producer topic
	Key
	Publish metrics & Publish position
	Priority
	Quality of service (QoS)

	Cloud Subscriber Configuration
	Topic

	References
	References
	ESF Documentation
	Kafka Documentation
	Kafka Known Issues

